End-to-end Differentiable Proving

نویسندگان

  • Tim Rocktäschel
  • Sebastian Riedel
چکیده

● Architecture allows us to induce rules of predefined structure ● We can, for instance, incorporate the inductive bias of a transitivity relationship in the knowledge base θ1(X,Y) :θ2(X,Z), θ3(Z,Y). ● θi are vector representations for unknown predicates ● They can be learned like all other vector representations ● They can be decoded at test time by finding the closest known relation using the RBF kernel ● Rule confidence is minimum RBF similarity over all decodings ● Confidence is an upper bound on the proof success that can be achieved when applying the induced rule

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiable Learning of Logical Rules for Knowledge Base Reasoning

We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end ...

متن کامل

End-to-End Differentiable Adversarial Imitation Learning

Generative Adversarial Networks (GANs) have been successfully applied to the problem of policy imitation in a model-free setup. However, the computation graph of GANs, that include a stochastic policy as the generative model, is no longer differentiable end-to-end, which requires the use of high-variance gradient estimation. In this paper, we introduce the Modelbased Generative Adversarial Imit...

متن کامل

Differentiable Learning of Logical Rules for Knowledge Base Completion

We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end ...

متن کامل

Differentiable cellular automata

We describe a class of cellular automata (CAs) that are end-to-end differentiable. DCAs interpolate the behavior of ordinary CAs through rules that act on distributions of states. The gradient of a DCA with respect to its parameters can be computed with an iterative propagation scheme that uses previously-computed gradients and values. Gradient-based optimization over DCAs could be used to find...

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017